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ABSTRACT

The volume averaging technique for obtaining macroscopic equations of motion for mate-
rials that are microscopically inhomogeneous is extended to the situation in which multiple
solid constituents form a porous matrix while a uniform 
uid �lls the pores. Previous volume
averaging e�orts of Pride et al. (1992) and others have concentrated on single solid constituent
porous media. The analysis for multiple solid constituents is complicated by the presence of
internal interfaces between the solid constituents within the averaging volume. These interfaces
are characterized by constants that measure the fraction of the interface on which solid touches
solid, 
uid touches one solid, 
uid touches the other solid, or 
uid lies on both sides of the
interface. These fractions are easily computed if the interface fractions are assumed to be un-
correlated, but real materials may be expected to exhibit some correlation. On the other hand,
these interface fractions do not appear in the volume average equations at the macroscopic level.
To complete the analysis, it is found that the jacketed and unjacketed tests of Biot and Willis
(1957) together with the thought experiments of Berryman and Milton (1991) for solid matrix
composed of two constituents are required in order to obtain de�nite results. Results are found
to be in complete agreement with earlier work of Brown and Korringa (1975) concerning the
most general possible form of the quasistatic equations for volume deformation and therefore
of the equations of motion for wave propagation through such media.



INTRODUCTION

Recent work by Pride et al. (1992) using volume averaging to derive the form of the
equations of motion for sound traveling through a 
uid-saturated porous medium (Biot, 1962)
has been restricted by the assumption that the solid part of such a solid/
uid composite was
microhomogeneous, i.e., composed of only a single solid constituent. Motivated by the results
of Berryman (1992b) showing that at least two solid constituents are needed to explain a variety
of laboratory data on 
uid-saturated rocks, we show in the present work how to generalize the
results of Pride et al. (1992) to multicomponent solid frames. Some of the earlier approaches
to volume averaging include those of Slattery (1967), Whittaker (1969), and Burridge and
Keller (1981). The approach of Pride et al. (1992) and the closely related approach taken here
have much in common with the methods of Slattery and Whittaker. However, those authors
were studying 
uid 
ow through a rigid solid matrix, whereas the present approach necessarily
includes the e�ects of solid deformation.

It will also prove important to make connection with the de�nitions of Brown and Korringa
(1975), which are themselves based on the well-known jacketed and unjacketed thought exper-
iments of Biot and Willis (1957). While generally similar ideas have also been presented by
Rice (1975) and Rice and Cleary (1976), we will stress the more detailed discussion presented
by Brown and Korringa. If the total volume of the porous sample is V and the pore volume
contained in that sample is V� (where the porosity is given by � = V�=V ), then Brown and
Korringa (1975) de�ne constants so that

�
�V

V
=

�pd
K�

+
�pf
Ks

(1)

and

�
�V�
V�

=
�pd
Kp

+
�pf
K�

: (2)

The independent variables in these formulas are the changes in di�erential pressure �pd and pore-

uid pressure �pf . The di�erential pressure is the di�erence between the external (con�ning)
pressure �pc and the 
uid pressure, so �pd = �pc � �pf . The coe�cients are written in terms of
the jacketed (or frame) bulk modulus K�, the unjacketed (or solid grain) bulk modulus Ks, and
the unjacketed pore bulk modulus K�. The remaining modulus Kp (which is called the jacketed
pore modulus) can be shown to be related to K�, Ks, and the porosity � by the formula

�

Kp

=
1

K�
�

1

Ks

; (3)

assuming only that an energy density for the bulk deformations exists. Measurements of Kp

have been made by Zimmerman et al. (1986) for some rocks. One other important fact is that,
if the porous solid frame is composed of a single constituent (microhomogeneity), then | and
only then | K� = Ks = Km, where Km is the bulk modulus of the single type of mineral grain
present.

In the second section of the paper, we brie
y review the averaging theorem and the single
solid component results. In the third section, we present the new results for volume averaging
of multicomponent solid frames and derive the macroscopic equations of motion, which are just
Biot's equations of poroelasticity with coe�cients that must be found through an homogeniza-
tion procedure.
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REVIEW OF AVERAGING THEOREM AND PREVIOUS RESULTS

The issue addressed by Pride et al. (1992) concerns the method by which one arrives at the
equations of motion for sound traveling through a solid/
uid mixture when it is assumed that
the solid is porous, but contains only a single type of mineral. The 
uid is homogeneous and
completely �lls the pores.

The averaging theorem

The averaging theorem used is due to Slattery (1967) and is based on the idea that volume
averages of derivatives are closely related to derivatives of volume averages, but care must be
taken to account properly for behavior of the averaged quantities at points or surfaces where
abrupt changes occur. In particular, when the quantity to be averaged exists on one side of an
interface and does not exist on the other side, an interior interface term will contribute to the
volume average of the derivative, but not to the derivative of the volume average.

Suppose that Q is a quantity to be averaged; Q can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the averaging volume is a �nite sphere
centered at position x, although other choices are also possible. We label this volume 
(x) and
the surface of this volume is @
. The exterior surface has two parts @
 = @E0 + @EQ, with
@E0 being the part where the quantity of interest Q vanishes identically and @EQ being the
part where Q 6= 0. In addition to the exterior surface, there is also an interior surface where
Q changes abruptly to zero and we label this surface @IQ, for interior. This interior surface is
the bounding surface for the region we will label 
Q, i.e., the region wherein the quantity to
be averaged Q is nonzero. With these de�nitions, it is straightforward to show thatZ



rQd3x =

Z

Q

rQd3x =

Z
@EQ

n̂QQdS +

Z
@IQ

n̂QQdS; (4)

where dS is the in�nitesimal of the surface volume element, and n̂Q is the unit outward normal
vector from the region containing nonzero Q. The main point of (4) is just that @EQ + @IQ is
the entire bounding surface of Q in the volume 
. As an example of the meaning of this result,
consider Q to be a vector quantity, take the trace of (4), and the result is just a statement of
the well-known divergence theorem for vectors.

The second result is that

r

Z


Qd3x = r

Z

Q

Qd3x =

Z
EQ

n̂QQdS: (5)

The result (5) follows from the fact that the volumes 
(x) and 
(x+ �x) contain virtually the
same internal surfaces and so these do not contribute to the gradient.

Combining these results �nally givesZ
@EQ

n̂QQdS = r

Z


Qd3x =

Z


rQd3x�

Z
@IQ

n̂QQdS: (6)

Then, dividing by the volume V =
R

 d

3x contained in 
 gives the averaging theorem:

rhQi = hrQi �
1

V

Z
@IQ

n̂QQdS: (7)
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One further de�nition is required to understand the notation to be used for the single solid
analysis. The average hQi is an average over the whole volume of 
, while we will also want to
consider the partial average �Q, related to the full volume average by

hQi = �vQ �Q; (8)

where �vQ is the volume fraction of 
 in which Q is nonzero.
Note that, although we generally neglect to show this dependence, all the average quan-

tities are in fact functions of the particular choice of averaging volume 
(x). In principle,

(x) can be as large as the sample being studied, or as small as desired. The legitimacy of
the averaging theorem does not depend on the size of the averaging volume. However, some
intermediate choice will generally be made for 
(x). Too small of an averaging volume implies
rapid 
uctuations in the quantities of interest (like the 
uid and solid dilatations), while a very
large averaging volume implies all the coe�cients in the equations are universal constants and
therefore prevents us from studying the e�ect of local inhomogeneities. Also, if the averaging
volume is too large, then oscillatory changes in particle displacement must average to zero over
the averaging volume, which is clearly an undesirable result when studying wave propagation.
Pride et al. (1992) provide further discussion of criteria for choosing the size of the averaging
volume.

Dynamical equations

Following Pride et al. (1992), we assume that the dynamical equations for constituents of
the solid/
uid mixture composing the porous medium can be linearized to

��
@2u�
@t2

= r � �� + f�; (9)

where subscripts � = f; s refer to 
uid or solid mineral, respectively, and the other symbols
are density �, displacement u, stress tensor � , and body force f , with t being the independent
variable of time. Assuming Hooke's law for the isotropic solid, we have

�s = Kmr � usI+Gm

�
rus +ruTs �

2
3r � usI

�
; (10)

where Km and Gm are, respectively, the bulk and shear moduli of the constituent mineral.
The identity tensor is symbolized by I. Similarly, the 
uid is assumed to be a linearly viscous
Newtonian 
uid obeying

�f = (�pf + �fr � _uf) I+ �f
�
r _uf +r _uTf �

2
3r � _ufI

�
; (11)

where �f and �f are, respectively, the coe�cients of bulk and shear viscosity. Dots over
displacement indicate a single time derivative. The increment of 
uid pressure associated with
conservative work is related to the 
uid dilatation by the bulk modulus Kf through

�pf = Kfr � uf : (12)

Performing the bulk averages on the microscopic stress/strain relations and using the aver-
aging theorem gives the general constitutive relations for the solid and 
uid stress tensors

(1� �)��s = (1� �)Kmr � �usI�Km��I

+(1� �)Gm

�
r�us +r�uTs � 2

3r � �usI
�
�GmD (13)
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and

���f = �K�

fr � �ufI+K�

f��I+ ��f
@

@t

�
r�uf +r�uTf �

2
3r � �ufI

�
+ �f

@

@t
D; (14)

where

�� =
1

V

Z
@I

n � u dS; (15)

D =
1

V

Z
@E

�
nu+ un� 2

3n � uI
�
dS; (16)

and

K�

f = Kf

 
1 +

�f
Kf

@

@t

!
: (17)

Quasistatic constitutive relations for isotropic materials

Taking the trace of equations (13) and (14) gives the following results. The constitutive
relations for dilatations and porosity are

�
�ps
Km

= r � �us �
��

1� �
(18)

and

�
�pf
Kf

= r � uf +
��

�
; (19)

where the partial averages �us and �uf are related to the full volume averages by husi = (1��)�us
and huf i = ��uf . One assumption implicit in (18) and (19) is that � changes much more slowly
in space than the displacement variables �us and �uf . This assumption allows us to remove the
factors involving the porosity from the divergence terms, but we will show in a later publication
that this assumption is not crucial to our analysis.

It is important at this point to understand the interpretations of all the symbols appearing
in the last two equations. First, the variable �pf is just the change in the average 
uid pressure
throughout the 
uid phase. The change in average solid pressure �ps is related to the macro-
scopic con�ning pressure change �pc by the averaging relation �pc = (1� �)�ps + ��pf . Thus,
�ps is just the average change in solid pressure experienced by the solid. Since �pc and �pf may
be viewed as the pressures we can control, �ps is the (solid volume) weighted average of the
con�ning pressure after subtracting that part of the con�ning pressure supported by the 
uid
pressure. The change in porosity is given by ��. The porosity change occurs naturally in these
expressions because

�� =
1

V

Z
@If

n̂f � uf dS = �
1

V

Z
@Is

n̂s � us dS: (20)

This result is demonstrated in the next section.
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The divergence of the average solid displacement r � �us is properly interpreted as the di-
latation of the porous solid frame (not the dilitation of the solid alone). This interpretation is
not obvious, but it follows from the fact that the term arises from the external surface integral
[c.f., Eq. (5)]

r � husi =
1

V

Z
Es

n̂s � us dS; (21)

which is exactly the surface integral needed to de�ne the overall behavior of the porous solid
frame. Thus, in terms of the de�nitions of Brown and Korringa (1975),

r � �us =
�V

V
= e = �

�pd
K�

�
�pf
Km

: (22)

This interpretation is the same one reached by Pride et al. (1992) using a combination of the
standard thought experiments (jacketed and unjacketed) of Biot and Willis (1957). To check
that this is so, we can easily show that

��

1� �
= �

�
1� �

K�
�

1

Km

�
(�ps � �pf) ; (23)

using either approach when a single constituent is present so that the Brown and Korringa
unjacketed constants satisfy Km = K�. Note that (23) can also be written as

�� = �

�
1� �

K�
�

1

Km

�
�pd; (24)

emphasizing that porosity is constant if di�erential pressure is constant | a general result for
microhomogeneous porous frames, but not true otherwise. Thus, the left hand side of (18) is just
the solid dilatation �Vs=Vs, while the two terms on the right hand side are �V=V+�(1��)=(1��).

Similarly, it is important to understand that the expressionr��uf is not just a 
uid dilatation,
but also includes the e�ects of 
uid motion in and out of the volume. In fact, this is already
apparent from (19) since the strict 
uid dilatation satis�es

�
�Vf
Vf

=
�pf
Kf

; (25)

yet (19) contains an additional term related to changes in porosity. The correct physical inter-
pretation of r � �uf is provided by its relation to the increment of 
uid content

� = � (r � �us �r � �uf ) ; (26)

where � is de�ned as

� �
�V� � �Vf

V
= �(

�V

V
�
�Vf
Vf

) + �� (27)

and has the interpretation (Biot, 1973; Berryman and Thigpen, 1985) of the relative change in

uid mass per unit volume of initial 
uid mass. Note that (25) and (27) are in agreement with
(26) if the averaging equation (19) is also satis�ed.
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The equations (18), (19), and (22) are su�cient to arrive at the standard form of the
equations relating e and � to the macroscopic pressures �pc and �pf for a single constituent
porous medium given by�

e

��

�
=

�
1=K� 1=Km � 1=K�

1=Km � 1=K� 1=K� + �=Kf � (1 + �)=Km

��
��pc
��pf

�
: (28)

These equations are completely consistent with the results of Pride et al. (1992) as can be
demonstrated by substituting the de�nitions given above into their formulas (48) and (49), and
then doing a straightforward (though somewhat tedious) 2�2 matrix inversion. The relationship
between these matrix elements and the coe�cients H , C, andM in Biot's equations are given by
Berryman (1992a). They are: H = K�+�C+4G=3, C = �M , and 1=M = (���)=Km+�=Kf ,
where the Biot-Willis parameter is de�ned by � = 1�K�=Km.

EQUATIONS OF MOTION WITH TWO SOLID CONSTITUENTS

When two solid constituents are present, the averaging theorem gives some signi�cantly
di�erent results that we will present and discuss here. For simplicity, we will limit the discus-
sion to averages of divergence of displacement and of the displacement itself. We make one
assumption implicitly here, that the averaging volume 
 is large enough so that statistical dif-
ferences between the bulk porosity in the volume and the outcrop of porosity at the surface of
the averaging volume are negligible.

We restrict discussion to a problem studied previously by Berryman and Milton (1991): two
porous constituents in fully welded contact. Welded contact between porous constituents implies
that no cracks/fractures can open up between these constitutents due to applied temperature
or stress. Welded contact is somewhat easier to analyze than nonwelded or partially welded
contact. Our intention is to treat these more general situations in a later publication, but the
main ideas will be presented here.

As a means of simplifying the algebra in the following analysis, we introduce in the second
subsection two new quantities that we call ~uA and ~uB , the divergences of which are just the
dilatations of the corresponding solid constituents. This step helps to avoid introducing various
terms that would ultimately cancel in the �nal formulas.

Results for all solids

If there are two solids present, for our present purposes of averaging we may lump them
together and act as if they are both generic \solids," using subscript \s" to refer to the regions
occupied. The averaging theorem (or in this case just the normal divergence theorem) states
that

hr � usi =
1

V

Z

(x)

r � us d
3x =

1

V

Z
@E

n̂s � us dS +
1

V

Z
@I

n̂s � us dS; (29)

where 
 is the averaging volume and V =
R

 d3x, with @E being the external boundary and

@I being the internal or pore boundary. The divergence of the average (found by taking the
Frechet derivative with respect to the averaging volume) is

r � husi =
1

V

Z
@E

n̂s � us dS: (30)
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The internal surface integral is easily interpreted as the negative of the change in porosity ��,
since the displacement integrated along the bounding surface produces a volume change that
is then normalized by the total volume V in the averaging volume 
(x), so

1

V

Z
@I

n̂s � us dS = ���: (31)

The left hand side of (29) is also easily interpreted as the total change in solid volume �[V (1��)]
divided by the averaging volume V . Comparing these expressions shows that

r � husi = (1� �)
�V

V
: (32)

Note that there has been no change in the averaging volume 
, but there has been movement
of solid in or out of volume and/or a change in state of compression of the solid. In this regard,
our notation is trying to re
ect the fact that experimentally we normally start with a �xed
volume of material V and then measure changes �V in that volume.

Accounting for the volume occupied by the solid initially, we have husi � (1� �)�us, so

r � �us =
�V

V
+

�us � r�

1� �
: (33)

We normally neglect the second term on the right hand side of (33), since we assume that the
scales of variation of the displacement �eld are much smaller than those for the porosity, so that
j�us � r�j << jr � �usj. However, a completely general analysis must account for the presence of
this term.

Results for constituents A and B

Now, when we want to distinguish the properties of the solids A and B, we can break up
the averaging volume into two pieces such that

hr � usi = hr � uAi+ hr � uBi ; (34)

which follows from the fact that material A and B occupy disjoint parts of the averaging volume.
The averaging theorem for the divergence of uA alone then states that

hr � uAi = r � huAi+
1

V

Z
@If

n̂A � uA dS +
1

V

Z
@IB

n̂A � uA dS; (35)

where we have explicitly noted that the interior interface has two parts: one boundary @If with
the 
uid (or pore space) and one @IB with the other solid (B).

Since

r � huAi =
1

V

Z
@EA

n̂A � uA dS; (36)

and a similar expression for r � uB , we �nd easily from the identity

1

V

Z
@Es

n̂s � us dS =
1

V

Z
@EA

n̂A � uA dS +
1

V

Z
@EB

n̂B � uB dS (37)
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that

r � husi = r � huAi+r � huBi : (38)

In order to determine the physical signi�cance of r�huAi, we need to repeat the analysis for
all solids, taking into account the fact that when there are two or more solids there must also
be additional interior interfaces between these various constituents. Of the four terms in (35),
each requires some interpretion. First, the left hand side has an interpretation similar to that
of the left hand side of (29). Thus, we have the volume average of the dilatation of A material
must be

hr � uAi =
�[VA(1� �A)]

V
; (39)

where VA is the total porous volume of A material and VA(1� �A) is the total solid volume of
A material.

The two integrals on the right hand side of (35) are more di�cult to interpret because
they involve the contact region of two porous materials having possibly di�erent porosities.
Statistically the A material should have solid material at this interface occupying the fraction
1 � �A of the total interface area and A-pore the remaining fraction �A of the total. The B
material has corresponding proportions. Now these continuous surfaces may be statistically
correlated or uncorrelated. If uncorrelated, we can easily compute the coe�cients we will need.
But if they are correlated, we must introduce some new constants with the following properties:
�AB = �BA is the fraction of the interface on which solid A touches solid B, �Af is the fraction of
the interface on which solid A touches the 
uid in B, and similarly �Bf is the fraction on which
the solid B touches the 
uid in A. Within our general assumption of statistical homogeneity,
these constants should obey the relations �AB + �Af = 1� �A and �BA + �Bf = 1� �B. One
immediate general result is that the di�erence �Af � �Bf = �B � �A. The solid/solid contact
area should be proportional to �AB, which may be very small or it can be as large as the
minimum of the two solid fractions (1 � �A), (1 � �B). For uncorrelated surfaces, we expect
�AB = (1 � �A)(1 � �B), �Af = (1 � �A)�B, and �Bf = (1 � �B)�A. These identities are
easily shown to satisfy the statistical sum rules for these coe�cients. For correlated interfaces,
we may view �AB as a new microstructural parameter that characterizes the internal (to the
averaging volume) solid/solid interface.

The �rst integral on the right hand side of (35) is the surface integral of displacement
along the 
uid boundary. This term has the same signi�cance as the corresponding one for the
whole solid; it is the change in porosity associated with A material. The total pore volume
associated with A is VA�A, so the change in pore volume must be a change in this quantity.
However, the surface integral is strictly over the original boundary of the A material (prior to
the displacements uA), so the correct expression for this change in the absence of other solids
is clearly VA��A. But, in the presence of other solids, we must account for the possibility of
changes in overall porosity due to changes in volume fraction. Thus, the full contribution of
this term is Z

@If

n̂A � uA dS = �VA��A + V �Af�vA; (40)

using one of the constants introduced in the preceding paragraph. When the volume fraction
does not change, as in the case when the averaging volume happens to contain only A material,
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we see that this expression reduces correctly to (31). When we write the corresponding relation
for the B phase and then consider that it must be true thatZ

@If

n̂s � us dS =

Z
@If

n̂A � uA dS +

Z
@If

n̂B � uB dS; (41)

then we see that the extra terms proportional to change in volume fraction are exactly what
were needed to guarantee that (41) is equivalent to �� = vA��A + vB��B + (�A � �B)�vA.

The second integral on the right hand side of (35) is the surface integral over the AB
solid/solid interface. This term also has the important characteristic that it must be exactly
the negative of the corresponding term for the B material. So however we interpret it, the
expression should be easily identi�ed by the fact that interchanging A and B should change the
sign of the term. Making the identi�cation that

1

V

Z
@IB

n̂A � uA dS � �AB�vA; (42)

where �vA is the change in volume fraction of porous constituent A, we �nd that this inter-
pretation is reasonable. If an imaginary continuous surface between the porous constituents
is drawn and the corresponding surface integral taken, then the result would be exactly �vA.
Since the AB interface occupies only a fraction �AB of this total interface area, we see that (42)
follows.

The remaining term to be interpreted in (35) is proportional to the surface integral of the
A component displacement. Combining the previous results, this average must be given byZ

@EA

n̂A � uA dS = (1� �A)[�VA � V �vA] = (1� �A)vA�V; (43)

with a matching expression for the B phase. That these two integrals must satisfy the sum rule
in (37) together with (32) implies that their sum must be equal to (1 � �)�V which is easily
seen to be true.

Comparing all these expressions, we �nally obtain the result

r � huAi = vA(1� �A)
�VA
VA

� (1� �A)�vA; (44)

which is the desired expression for divergence of the average displacement of A.
Although the divergence of huAi is given rigorously by (44), the quantities that actually

appear in the quasistatic equations of motion are simply the dilatations of the constituents, so
we will de�ne a new quantity ~uA satisfying

r � ~uA �
�VA
VA

; (45)

which is related to �uA by

r � �uA = r � ~uA �
�vA
vA

; (46)

where the change in volume fraction is itself related to ~uA and the corresponding expression of
B by �vA = vAvB(r � ~uA �r � ~uB). These de�nitions and interrelations will be important for
our analysis of wave propagation issues for multicomponent rocks.
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Fully welded contact

For two porous components A and B in welded contact, the volume fractions of the com-
ponents vA; vB satisfy

vA + vB = 1; (47)

while the overall porosity is given by

� = vA�A + vB�B ; (48)

where �A; �B are respectively the porosities of the porous constituents A and B. The fractions
of the total volume occupied by the solid components are �vA = vA(1 � �A) and �vB(1 � �B),
respectively. The solid components in A and B are individually pure, so that each porous
constituent may be thought of as a microhomogeneous (or Gassmann) material.

Averaging equations:

Volume averaging for the three components (two solid and one 
uid) yields

�
�pA
KA

= r � ~uA �
��A

(1� �A)
; (49)

�
�pB
KB

= r � ~uB �
��B

(1� �B)
; (50)

and

�
�pf
Kf

= r � �uf +
��

�
: (51)

These three equations should be compared to (18) and (19). Now, to provide some further
insight, notice that the left hand side of (49) is equal to �[VA(1� �A)]=VA(1� �A), while the
right hand side is �VA=VA � ��A=(1� �A).

Other relationships:

It is useful to think of equations (49) and (50) as equations for the changes in the the
constituent porosities ��A and ��B . To relate these values to the expressions above, we need
another pair of equations. First, note that from (48)

�� = vA��A + vB��B + �vA(�A � �B); (52)

so we need an expression for the change in vA. For welded contact, we obtain such an expression
by noting that by de�nition

vA + �vA =
VA(1 +r � ~uA)

VA(1 +r � ~uA) + VB(1 +r � ~uB)
; (53)
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which upon expansion and neglect of second order terms yields

�vA = vAvB (r � ~uA �r � ~uB) ; (54)

while for welded contact �vB = ��vA. Note that, if A and B expand or contract at the same
rate so r � ~uA = r � ~uB , then �vA = 0 as expected.

We also want to view the combined solid volume Vs = VA(1� �A) + VB(1� �B) as a whole
in order to recover Biot's macroscopic equations for the inhomogeneous material. Then, it is
important to recognize that the solid dilatations must satisfy

r � �us = vAr � ~uA + vBr � ~uB; (55)

and, similarly, the solid pressures must satisfy

(1� �)�ps = �vA�pA + �vB�pB: (56)

Relation (55) may be easily derived by considering the denominator of the right hand side of
(53), whereas (56) is just a statement of force conservation across the material boundary.

CONCLUSIONS

A volume averaging technique for obtaining macroscopic equations of motion for materials
that are microscopically inhomogeneous has been extended to the situation in which multiple
solid constituents form a porous matrix while a uniform 
uid �lls the pores. The analysis for
multiple solid constituents was complicated by the presence of internal interfaces between the
solid constituents within the averaging volume. These interfaces are characterized by constants
that measure the fraction of the interface on which solid touches solid, 
uid touches one solid,

uid touches the other solid, or 
uid lies on both sides of the interface. These fractions are easily
computed if the interface fractions are assumed to be uncorrelated, but real materials may be
expected to exhibit some correlation. Although the presence of these interfaces complicates our
analysis, the interface fractions nevertheless do not appear in the volume average equations at
the macroscopic level. To complete the derivation, it was found that the jacketed and unjacketed
tests of Biot and Willis (1957) together with the thought experiments of Berryman and Milton
(1991) for solid matrix composed of two constituents were required in order to obtain de�nite
results. Results were then found to be in complete agreement with earlier work of Brown
and Korringa (1975) concerning the most general possible form of the quasistatic equations
for volume deformation and therefore of the equations of motion for wave propagation through
such media. The results therefore provide independent con�rmation of the form of the equations
that has been assumed to be correct since the work of Brown and Korringa (1975) and Rice
and Cleary (1976).
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